Subnanometer Structure of an Asymmetric Model Membrane: Interleaflet Coupling Influences Domain Properties

نویسندگان

  • Frederick A. Heberle
  • Drew Marquardt
  • Milka Doktorova
  • Barbara Geier
  • Robert F. Standaert
  • Peter Heftberger
  • Benjamin Kollmitzer
  • Jonathan D. Nickels
  • Robert A. Dick
  • Gerald W. Feigenson
  • John Katsaras
  • Erwin London
  • Georg Pabst
چکیده

Cell membranes possess a complex three-dimensional architecture, including nonrandom lipid lateral organization within the plane of a bilayer leaflet, and compositional asymmetry between the two leaflets. As a result, delineating the membrane structure-function relationship has been a highly challenging task. Even in simplified model systems, the interactions between bilayer leaflets are poorly understood, due in part to the difficulty of preparing asymmetric model membranes that are free from the effects of residual organic solvent or osmotic stress. To address these problems, we have modified a technique for preparing asymmetric large unilamellar vesicles (aLUVs) via cyclodextrin-mediated lipid exchange in order to produce tensionless, solvent-free aLUVs suitable for a range of biophysical studies. Leaflet composition and structure were characterized using isotopic labeling strategies, which allowed us to avoid the use of bulky labels. NMR and gas chromatography provided precise quantification of the extent of lipid exchange and bilayer asymmetry, while small-angle neutron scattering (SANS) was used to resolve bilayer structural features with subnanometer resolution. Isotopically asymmetric POPC vesicles were found to have the same bilayer thickness and area per lipid as symmetric POPC vesicles, demonstrating that the modified exchange protocol preserves native bilayer structure. Partial exchange of DPPC into the outer leaflet of POPC vesicles produced chemically asymmetric vesicles with a gel/fluid phase-separated outer leaflet and a uniform, POPC-rich inner leaflet. SANS was able to separately resolve the thicknesses and areas per lipid of coexisting domains, revealing reduced lipid packing density of the outer leaflet DPPC-rich phase compared to typical gel phases. Our finding that a disordered inner leaflet can partially fluidize ordered outer leaflet domains indicates some degree of interleaflet coupling, and invites speculation on a role for bilayer asymmetry in modulating membrane lateral organization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interleaflet coupling and domain registry in phase-separated lipid bilayers.

There is clear evidence of an interleaflet coupling in model lipid/cholesterol membranes exhibiting liquid-liquid phase separation. The strength of this coupling is quantified by the mismatch free energy, γ. We calculate it using a molecular mean-field model of a phase-separated lipid/cholesterol bilayer and obtain values that increase as the concentration of saturated lipids in the coexisting ...

متن کامل

Lipid Domain Co-localization Induced by Membrane Undulations.

Multicomponent lipid bilayer membranes display rich phase transition and associated compositional lipid domain formation behavior. When both leaflets of the bilayer contain domains, they are often found co-localized across the leaflets, implying the presence of a thermodynamic interleaflet coupling. In this work, it is demonstrated that fluctuation-induced interactions between domains embedded ...

متن کامل

Chloroform alters interleaflet coupling in lipid bilayers: an entropic mechanism.

The interaction of the two leaflets of the plasmatic cell membrane is conjectured to play an important role in many cell processes. Experimental and computational studies have investigated the mechanisms that modulate the interaction between the two membrane leaflets. Here, by means of coarse-grained molecular dynamics simulations, we show that the addition of a small and polar compound such as...

متن کامل

Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers.

Plasma membranes of cells are asymmetric in both lipid and protein composition. The mechanism by which proteins on both sides of the membrane colocalize during signaling events is unknown but may be due to the induction of inner leaflet domains by the outer leaflet. Here we show that liquid domains form in asymmetric Montal-Mueller planar bilayers in which one leaflet's composition would phase-...

متن کامل

A New Resistance Model for Interpretation of Gas Permeation Data of Composite and Asymmetric Membranes

In this work a new resistance model has been presented based on that of Henis-Tripodi which can be used for interpretation of gas permeation data in composite and asymmetric membranes. In contrast to the previous works, in this model the fraction of the support layer surface that includes the pores filled with coating material has been taken into account. The influences of the filled pores on s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2016